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COMPRESSIBLE FLOW ABOUT SYMMETRICAL JOUKOWSKI PROFILES

By Carr KAPLAN

SUMMARY

The method of Poggi i employed for the determination
of the effects of compressibility upon the flow past an
obstacle. A general expression for the velocily increment
due to compressibility is obtained. This general resull
holds whatever the shape of the abstacle; but, in order to
obtain the complete solution, it is necessary to know a cer-
tain Fourier expansion of the square of the velocity of
Jlow past the obstacle. An application is made to the case
of @ symmetrical Joukowski profile with a sharp irailing
edge, fixed in a stream of velocity vy af an arbifrary angle
of attack and with the circulation determined by the Kutta
condition. The results are obtained in a closed form and
are exact insofar as the second approximation to the com-
pressible flow is concerned, the first approzimation being
the result for the corresponding incompressible flow. For-
mulas for the liff and moment analogous fo the Blasius
Jormulas in incompressibls flow are dereloped and are
applied to thin symmetrical Joukowski profiles for small
angles of attack.

Since actual experimental data for Joukowski profiles
are lacking, the theorefical results are applied to @ thin
and a thick profile at zero angle of attack, and the velocity
and pressure disiributions are calculated and compared
with those for the corresponding incompressible cases. The
critical values for the ratio of the siream relocity v, fo the
velocity of sound in the sfream c,, corresponding to the
attainment of the local velocity of sound ¢ by the fluid on
the surface of the airfoils, are also obtained.

INTRODTUCTION

Yhen s compressible fluid streams past a fixed body
with a velocity small enough so that nowhere in the
fluid is the local velocity of sound exceeded, the fow
may be represented by a velocity potential. The effect
of compressibility is to distort the streamline picture
associated with the corresponding incompressible flow.
This distortion has been calculated by Janzen (refer-
ence 1) and Rayleigh (reference 2) for circular cylinders
and spheres and recently for elliptical cylinders by
Hooker (reference 8). The methods used by these
suthors, however, are not feasible for the determination
of the flow about obstacles other than the simple ones
mentioned. On the other hand, a method introduced

by Poggi (reference 4) may be used in determining the
flow about shapes resembling airfoil profiles.

The method due to Poggi is as follows: When the
fluid is compressible, the equation of continuity may be
written as D
£3 y__ B

Sz T - pDf 0y
where the symbol D/Dt denotes, as usual, the operator

%—[—v, g—z+u, g—y; 2y, ¥, the fluid velocity components;

and p, the variable density of the fluid.

This divergence will introduce extra terms in the
expressions for the velocity components, the divergence
at an element dxdy being equivalent to a simple source

1 Dp

p Dt
5 dxdy.

pressible flow by an incompressible flow due to a suitable
distribution of sources throughout the region of fiow.

If the motion of the fluid is steady, then the equation
of continuity and Euler’s differential equations of
motion become:

of strength Poggi thus replaces the com-~

_+_=_£=.§£_h3£’
o  pdz poOY
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and Y a.r'“"w—_ e )
oy _lop
U -I-v, by_ ooy

Assuming the pressure p to be a function of the density
p only and introducing the local velocity of sound

c(=-‘ /gﬂ)x equations (2) yield the following:

bv, zE}_v, 0v; | vy ,@g{l
Srtay=a vig ton gyt 3 ) r o
or if
=92+t
then
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If it is further assumed thaet the motion of the fluid is

irrotational, then
or, O

or _W=O
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and & velocity potential ¢ may be introduced, where

The strength of the source at & point (z, ¥), given by
the expression on the right-hand side of equation (3},

then becomes
1 fopdn? +a¢w
T 4xc\ Oz 0z ' oy Oy

Suppose now that (£, 9) and (z, ¥) are the rectangular
coordinates of points in the { and 2 planes, respectively,
and furthermore that these two planes are conformally
related, that is

¢=f(2)

where ¢=£41y, z=z+iy. Let the { plane be the
plane of the profile and the z plane, the plane of the
circle into which the profile is mapped by the foregoing
conformal transformation. It is well known that, at &
pair of corresponding points at which { and z possess no
singularities, a source at one such point corresponds to

/

z plane

N

F1aURE 1.—Image of a simple source with regard to a clrele.

a source of equal strength at the other. It follows then

that at corresponding elements

(a¢ ov? a¢ Zm’)dé i
T 4xe\ 3¢ ag dn o )T
d¢ Ot b¢v -l
41:-02 ox or Z}y'ay

where, in the expression on the right-hand side, ¢ is the
veloeity potential in the 2 plane while z is the magnitude
of the velocity in.the ¢ plane.

In polar coordinates (r, 8) the strength of a‘source at
an element dzdy of the z plane is

¢ av’+1 O v’
411-02 or or "2 08 o8

dy @)

rdrd8
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or, introducing & new variable )\=Ir—? (where R is the

radius of the circle into which the profile is mapped), and

v,=—gg3; Dy= —%— —g—?: this expression becomes

(5).

1 ot v OV\R
TrA\" N xae) Mo

With the source distribution known in the plane of
the circle and given by equation (5), the induced tan-
gential velocity at the circular boundary may be cal-
culated.

Thus consider 2 unit source located at a point @ of
the z plane. In the presence of a circular boundary of
radius R, the velocity induced at any point P external
toor on the boundary is given by

dw_
=

_( 1 1 _1
2—2q 2—8y 2

where S is the point inverse to ¢ in the circle. (Sce
fig. 1.) Since the normal velocity at the boundary is
zero, the velocity there is wholly tengentiel and is
given by

(@)

z=Re%;

2\ sin (6—8)
TRII—2x cos (6—8)+ M

(6)

R2
where zg=re®; and 23=76“
Hence, the total velocity induced at any point of the
circular boundary by the system of sources given by
equation (5) is

f f l‘o bv’
'ax N0
A= res T—2% cos (—s) % O (F—8)dNdd (7)

The justification for replacing ¢ by ¢ in equation (7) may be
gshown in the following way. From the Euler equations of
motion {(2) and the condition for irrotational motion, it follows
that

1 1
5 dv'+; dp=0
Then when adiabatie conditions prevail so that the relation

between p and p I8
- (&)*
p_.po po

it follows by integration that

e[ FGPE] e

where the zero subscripts denote the corresponding magnitudes
in the undisturbed stream. From the foregoing cquation it is
seen that ¢ has a maximum value at the stagnation point where
v=0, that is

cmet=c? (14752 %
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Furthermore, &s the streamline corresponding o the boundary
of the obstacle ia traversed, a point is reached where, for a definite
value of the ratio v/c, the veloecity of the fiuid equals that of
the local velocity of sound. This critical veloeity is obtained
from equation (8) by putting ¢=v and solving for v. Thus

”crll" +lc°z<1+721"c:: (9)

For example, let rofqg=0.75. Then with v=1.408 (for air)

Cnaz=1.056 ¢
and
Emin=Ucrit= 0.962 Cq

Away from the obstacle, » approaches », and ¢ approaches ¢.
Thus it is seen that the variation of the loeal velocity of sound
from ¢, is, in general, small enough to permit replacing ¢ by e,
at least to a first approximation.

Equation (7) is a functionsl equation for the fluid
velocity » and may be solved by 2 method of succes-
sive substitutions. The procedure, due to Poggi, is to
substitute for o,, #, and #* velues pertaining to the
corresponding incompressible flow and thus obtain a
first approximation to the sink-source distribution in
the plane of the circle. The method thus considers
the incompressible flow to be the first approximation
to the compressible flow. The second approximation
is then obtained by superposing on the incompressible
flow the effect of the sink-source distribution as given
by equation (7); that is

i-'n'mw='vucm:up"I'AU (10)

GENERAL DEVELOPMENTS

Before equation (7) is applied to any particular case,
it is expedient to consider it first in a general way.
Thus, suppose that #* can be developed in & Fourier
series so that

.02

s ,'=%ao-[—i1(au cos -+ b, sin nd) (11}

where the a,, b, are functions of A and also contain the
parameters of the shape.
Then
%:vo’[%ao’+i {(a,' cos nd+b, sin n&)]
4 nm]

<

5= ’§ n[b, cos nf—a, sin nb]

where the primes dencte differentiation with regard
to A. Expressions for ¢, and ry are obtained from the
complex potential of the flow past a circular cylinder
of radius B, with the circulation determined by the
EKutta condition. Let the stream of velocity v, make
an angle « with the negative direction of the r axis.

Then the potential is
’w=Uc< e‘“+-ei., +aR (ele—e%) log = B
and
Z}0(:«:+R) (zet=—Re %) (12)
z 2 .
Then

p.=—py(1— 7% cos (0+a)=wuy(e; cos 816, sin )
and
s=0,(1+2\%) sin (8} a)+2ph sin &

=vo<g—°+d1 cos §-+d, sin 6)
where
e;=—(1—MN) cos
=(1—A%) sin &«
%’=27\ sin e

di=(1+N) sin &
da=(1+2%) cos

Therefore

o 1
U =5 oy’ (¢, cos 8¢y sin 6)

—I-%vgsél{a.’cl[cos (n—1)6+cos (n4-1)6]

+bJ/¢lfsin (n+1)8+sin (n—1)6]
+a/cfsin (n+1)8—sin (n—1)6]
+by’co[cos (n—1)8—cos (n41)8]}

and
o 2)\Zn{a,d1[sm (n+1)6-+sin (n—1)6]

—budifcos (n—1)}6+cos (n+1)6]
+a.docos (n—1)8—cos (n+1)6]
—badyfsin (n+1}8—sin (n—1)6]
+a.dy sin nf—bed, cos n8}

The following definite integrals will be found useful in
evaluating equation (7):

j"’ sin {§—8) cin mf do— 0 if n=0
o 1—2Xcos (A—8)+ N aA*teosnsif nx1
if n=0

sin (6—3) _
L 193 cos =) F RS M= _ ya1gin nsifn=1

Then substituting the foregoing expressions for -u,%

Vs ort.

and — N aemto equation (7) and integrating with re-

gard to 6, it follows, after replacing the derivatives
a.’, by by a., b by means of partial integrations, that
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Av=i[— (@), _, 8in 3+ ) — (@), _, sin (6—a)
dcg? Aml 2/ Amt)
+ (ba)y o €08 —a) —2227& cos (né+a) J; lh“b,_ldk
+379n cos (nb—a) f N2,
Nmel 0
[ 1
390 sin (8t f Ny 1d
ma] 1]

[ 1
—’§2n sin (n&—a) o hn_za-n.l.ldk
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¢ plane, and the circle of radius R with center at the
origin 0 of the z plane into a Joukowski profile with a
sharp trailing edge in the { plane. (See fig. 2.) The
distance 00’ is denoted by ae and e is therefore & measure
of the thickness of the profile. Since the profile has =
sharp trailing edge, the two circles touch at the cor-
responding point (—a, 0). The relation between the
2, £’ planes is
=tz

If w denotes the complex potential of the incompres-
sible flow in the { plane, then the complex velocity is
given by

@ 1
+-sin anz=i4n sin né ok““lbndk d_w= dw de d2’
® 1 dt dzdz' dt
H -1
+sin a,12-14n cos né s a-lg, d)\] (13) where
¥y 7
z,z'planes
: - § plone
P
/ < {e o
i -Za,N o 2a0 >

FIGURE 2.—Transformation of & symmetrioal Joukowsk! profile into a circular rontour.

It is to be especially noted that this expression for A
is perfectly general and independent of the type of pro-
file considered. All that is required for a complete
solution of equation (13) is a knowledge of the Fourier
development for %z’

APPLICATION TO SYMMETRICAL JOUKOWSKI
PROFILES

Suppose now thaet the boundary in the ¢ plane is a
symmetrical Joukowski profile with a sharp treiling
edge. The Joukowski transformation given by

;=245 (14)
maps the circle of radius a with center at the origin 0’ of
the 2’ plane into the line segment (—2a, 0; 2, 0) in the

dz z'*

dz =1 and &&=
&7 M ET T o —a)
According to equation (12)
dw___ (z1+R)(ze**—Re'e)
dz_ 2

Hence
dw__ (24R)(ze'*—Re~'=)2"
s 2z +a)(7'—a)
But
g +a=z4+a(l+e)=2z+R
Z—a=z—a(l—¢)
Therefore

dL‘-’: {2+ ea)?(ze'*—Re~ta)
& 0 Fe—a(l—e)]
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Introducing

it follows that

v*—ld 2(1 +2hN cos +RDH1—2A cos (8+2a) + 3]
e T 1—2k\ cos 64522

It is now required to obtain the Fourier series for
/e, Thus, making use of the following developments:

sin ¢
1—2kN cosf-+k2N
cos f—kX
1—2kX cos §-Fk2N2
1
1—2&X cos §+E2\

it follows that
. ano LHN—2EN cos 2a
=(1-F2AN cos 8+ A2\ )Z[ T—2n

+2X sin 2 S (kN sin 26

A=l

l(l—[—}\’) (14-k*N?) cos 2a &
E(1—E2N2)

Reducing this expression to the form of a2 Fourier
geries, it turns out that, for n>2

ae=2E*3(h Lk (1 +RENDIAR
[cos 2m_[_l’c(1+ A)—2 cos 2

_i:l(kx)ﬂ-l sin 18

—i}(k)\ "1 cos né
=]

_l_i%{l +2,.i_1(7"")' cos nﬂ]

23N cos nﬁ]

=1

1—Fx a] ‘ 5
be=2k"3(h+£)*(1+REN)A" sin 2a

For later use it will be convenient to introduce the
following notation for n=0:

@x'=2k"3(h4-E)2(1+REN) A" cos 2a
0 =2k (h-+ B2 (1 +REN LT M) —2 cos 2a

¢ 1—IN (16)
Ba =2k*3(h+E)2(1+hENYNT sin 2
@y =a,'+a,?
Also
S80=AD+(B+CENFEA
0,=2BD+ (A+Blen+CF?) Fi
0,=20D+ (B+AkN-BEN+-CR) Fien | (A7)
b= E(A+Bln+CI2NY)
by=EB+ AFNL-BENL M)
where

A=1F+4RN 4R\
B=2hN(L+A2NY
O=h22

D=

14+{1—2k cos 2c) 32
1—k2\

E=2\¢n 2«

F=

Ttis

2(k—cos 20) +2k (1 —Fk cos 2a) \?
E(L—EY)

seen that

(@o)r=0=2 and (@a)r-0=(ba)rmc=0

Equation (i3) then becomes

Ap=

:—i{—z sin (§+a)+2 cos (5_6,)];1((,[—'51)&)\ ‘

1 —_
14 cos (25—a) ﬁ Mbs—Ba)dA
—2 cos (+a) fo =T AN
—4 cos (264 @) E)\(b,-—-?;,)d)\
1 —_—
—4 cos (25+a) fo N(b—B)dA
3 _
—6 cos (30+a) L N (Be—TF)dA
I —
+2 cos (6+a)ﬁ Abod X
1 —_
+2 sin (+a) L (@—aDdx
+4 sin (256+a) J; 1)\(a,—E,)a'h\
I —
—2 sin (b—a) J; (@—a)dr
—4 sin (2%6—a) fo ‘Mar—an)da
42 sin (4 ﬁ ‘Nar—ao)dA
+4 sin (25+a) fo 17@(‘::1—21)::&
+6 sin (3a+a)ﬁlx=(a,—6,)dx
+2 cos (B—a)J:% (bs— ba)dA
—9 sin (-—a) ﬁ L (@—and
—é 2n cos (nd+ ) fo 1(7\-3,._1-[— =13, )dN
-[-g 2n cos (nb—a) L I(7\"-"3,+1+ 2515 )dA

+332n sin (w6+a) [ VB A1)

~ :gl 27 sin (nd—a) L Tt kﬂ-‘E.)d)\:I |
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where
20—, =5 { (b k) (cos 2a—k)+IB+ [k (1 12)

—k(1+R2) A+ kY2 +2hk (h+k)? cos 2a
+2h%? cos 2]\ [— Rk (h+k)?
+ Wk (R4 k) cos 2N}

7 =22 °°s 08 2015 (b4 ok) +- 2K\

— =
2R\ 14+ N3 (1—2k cos 2a)
k 1—k3

(19)
- 92
@—a2=—% M cos 2a

by 22 sin 2a

[A(h-2k) 20322

62—33= —‘?F' )\.2 sin 2a

bo=15 (h+ B2 (1+ AN sin 2a

It is a great simplification to replace @, by @,'+u,? in
the lest two integrals of equation (18) before perform-
ing the integrations. Then

—iﬁn cos (nd+a) OI'(N‘E,_';-I- A==1E)dA
359 sin (n+a) ol(xﬂau+11+ Alg A
=]

= (L+5) (B TS 4nk 4 gin (nb—a)
Nl
[} atarrmean

and 1 (20)
’§12n cos (nd —a)j; ‘(7\""3,,_,_14- 1B
—,%‘271 sin(né—a) ol(h“"anﬂl—l— A —lg hd A
——(14k) (h+k)2i‘{4nk~—s sin (n5—3a)
L ENIICOUSEN
Also

27 sin (n5+a)

n=l
= (14k) (h-l—k)’ililnkﬂ sin (n8+a)
ﬁ "1+ RN TN

+(1—2k cos 2a+ k% (1 k) (h+F)?

1 1 hk)\z 2)\2n+1
e —a

fol (N@p_i?+ Al 2)d N

(21a)

S 4k -5 sin (064 a)
fm] 0
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and
nz'_i;zn sin (ni—a) ﬁ Ot 2 N0,
=—(L+F) (h+k)=§4nk=-4 sin (nd—a)
ﬁ (LF RGN
+ (1—2k cos 2a+ k) (L+k) (R +k)?

’(1+hk7\’)’)\’“‘
@

L (21h)

i‘ink”" sin (n§—

Rm]

Consider now the integrals

J,="Zi)lnk" sin (n3+B) ﬁ ERISCUUSEN
and

J1=§_znk“ cos (nd+8) J:(l SR AT) NI
Then .

.’]}+z‘J,=e‘ﬂnZ:;, J; l(1 + RE AR tnkn N totmid )

Let s=FA\2, Then

4 2 -m—p: )
Jikid=ty [ as =T ey L

- e8(14-he= )2 4-2h (1 +he=®) log (I—ke“)]

Hence

L(l—]-hk)’ gin 6+ p8)—k sin 8
'1—2Fk cos 6+£F

ksiné

—hl:COS (5— ﬁ) tan“m

+3sin (5—B) log (1—2k cos 5-+4%)—F sin p]
—h’l:ll sin (§—B)+cos (26—B) tnn"m
+§sin (26—B) log (1—2k cos 5+ —§k’ sin B:l

Replacing B by e, —a, or —3a, the corresponding integrals
in equations (20) and (21) are obtained.
Consider finally the integrals

o ™ 212y 211
_ I1=nz_‘{ nk® cos naf (1+f‘]‘—)i—i—3——) X
and
«© N2y en—-1
Is=,§1 »nl.“ sm naf .(_].'L.l_.!}_@_}.z)__!k
Then

L14-REN? &

Titili= | S s 2 nEN) e



Again let s=k\2

COMPRESSIBLE FLOW ABOUT SYMMETRICAL JOUEOWSEI PROFILES 203

Then

., e8[E (1-+hs)? .
I‘+1’I’=§ﬁ (1—%ks) (l—se“)’ds—

— s log -

—#(—;_Tee—%log (L —ke®)

+ (h-t+E) (h+-e%) log (1—ke®)

T
_ k(hte®)?
2(1—ke®) (k—e®)
Therefore
(h+k)? 2k— (1+k2) cos 8
L= {T—2k cos G-H‘:’)’ og (1—k%)

Tz 1—2Fk cos 612

+ 1—2k cos §+£2

h (hk—1) cos 8§ 4+ k—h cos 28

log (1 —2F cos §+k%)

Esing
1—kcosé
h+£ [Rk2—2k+ (1 —2kh+-k2) cos 8+h cos 28]

b (hk—1) sin 6—Fk sin 25 tan-1

= (1—2k cos 5+ k%2
log (1—2k cos §+k%)
h+k (1—2kh— Ic’)s':1116+hsm.5t ol ksins
2 (1 —2k cos § k) AR [ Fcose

kE (14£% cos 612k

+5 T cos 6Lk
and
_(h+E* (1—F)sins o (1—
Lh="5r" T—2F cos st/ 108 U—F)
1 QD) An8h o0 % 108 (12 cos 5-+E)
h (hk—1) cos 6-+-k—h cos 25 - ksiné
9 1—2Fk cos §-+K2 ' 1—Fk cosa

h—i—ll hk2—2k+ (1—2hE+k?) cos 8-+h cos 25
2 (1—2k cos §+E57
Eksin$

1—k cosd

h+k (1—2khEk—E?) sin 614 sin 25

tan~!

T4 (1—2F cos 5+7/3)?

_|_

log (1—2% cos§+&%)
kE (1—A)sins
2 1—2F cos s 12

From equations (i8), (19), and (20) and the integrals
Js, I, and I, it follows that
3r2 5h* 2R(A+2k
435 (h+2k)

[1 @ +5h’) (ht-k)?
ET3RT OB

sin (5+a)+[§ (3+3hk+£;k’) it 21

2h(h—|—2k)] sin (5_*_3&)_1_6% sin (25+a)

2
+ 1302 +2h(h+2l.)

sin (25+3«) +7:_ sin (3543e)
+5 sin (—a)+ BLERIER g
QB gy SOTBGHEY

+‘W(l—2k cos 2a+k%) I, sina
4(1—L°

)(h—I-IC) (1—2F cos 2a+Ek%) I, 00305} 22)

where J, (—a), for example, means that in the expres-
sion for J; (8), —a has been substituted for g; and

u—<v°) There is no difficulty in evaluating Anfr, for

any value of A except h=0. For k=0, k=1, however,
the Joukowski profile degenerates into a llne segment
end

é——p. sin {cos(6+2a)+2 sin o2 @fa)tsin a

1—cos$
2 sin? &

4sina &1
— 21— L <
T—cos3 log 2(1—cos 3) > (23)

1—cos 6amint

The last term in this expression contains the divergent
series -21%’ which approaches infinity like Lim log n.
n= R0

This infinite term shows that streamline flow cannot be
maintained about a straight-line profile except for the
trivial case of zero angle of attack.

CORRECTION FOR THE CIRCULATION

It is noted that the expression for the complex
velocity about the circuler profile given by equation
(12) was obtained with the circulation fixed by the
Kutta condition. When Av, representing the effect of
compressibility, is added to the incompressible velocity
obtained from equation (12) to yield the compressible
velocity, the Kutta condition no longer holds. In order
to restore the Kutta condition, an additional circulation
AT is added to the incompressible one. Thus, the
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velocity at the boundary of the circular profile is given
by

Ty+AT | Av

%:=2 sin (5+a)+m+R (24)

where T'y4-AT'=T and Iy;=4xB2 sin «, the circulation
in the incompressible flow. The Kutta condition, i. e.,
<%:)a =(, thus serves to evaluate AT. For é=n= the

expressions for J3(8), I;, and I, simplify considerably.
Thus

e Bsmr=—{EE L Hll0g (41—

+k”[k—%k’—log a +k)]] sin g

_ 1 E
(I1)a-f—2—ﬁlog (1+Ic)+ﬁlog (1—k —3

(Iﬂ)d-r=0

The relation between the velocitiesin the plane of the
circle and the plane of the profile is given by

dw_dwdzdz
B d dt
where 2'=2+ae and {= z'+§.
Then
L(il_:'l:l and .
‘dz'l 142h)\ cos 3+A%N _
d | 1328 cos 8 Ny 1—2kN cos 3-FIENE

It follows that on the profile where A=1
vp 1+2h cos 6--A2 %c
% +/2(1+cos 8)v1—2k cos 6-+A*0o
where vp is the velocity on the profile corresponding to
. on the circle.
When the profile ig assumed to be thin so that only

the first power of % is retained and the angle of attack is
small so that cos a2l and sin am«, then the Kutta

(25)

condition leads to the following expression for 5%,%

AT
Q_TR_%=”(1 +h)e (26)
It then follows that
-1+ 1fh, @7)

This value for the ratio I'/T, corroborates Glauert’s
result (reference 5)

T 1 1
T yi—n 12t
when the profile is very thin, 1. e., when £ is negligible
in comparison with unity.
Since the rigorous expressions are available, it may
be interesting to compare the approximate result
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given by equation (26) with the exact result obtained
from equation (22). Thus, for a very thin profile

defined by e=0'01<h=1%i’ k=—1%9i) and for the more

conventional profiles defined by €=0.05<h=2i11 k=-é—§;

and e=0.10<h=1i1: k=%), at angles of attack a«=10°
and «=>5° the following table presents the results:
em (.01 - =005 | em(, 16
@0 g | 2L | e | 2D | S | R2h
(porod | G | GEproxt | TR | Gpbrodk | o)
B | Ukt | NS | T | 0ot | Cowve | Cossn

It is to be noticed that for «=10° the exact evaluation
of AT /2wRy, yields a greater value for ¢=0.01 than for
€=0.05,"a fact not given by the approximate equation
(26). 'Thisreversal appears, in general, for larger values
of ¢ as the angle of attack increases; e. g., for ¢e=0.05
at «=20°. This feature of the exact expression for the
additional lift-has no practical significance, however,
insofar as the lift is concerned, since the appropriate
combination of ¢ and « showing this reversal is outside
the practical range.

In the calculation of the local velocities and pressures
on the surface of the airfoil, the rigorous expressions for
Avfv, are to be used. The rigorous derivation, however,
of the total integrated lift and moment on the airfoil
involves great mathematical difficulties. A simplified
form for Av/v, may, however, be obtained for a thin
Joukowski profile at small angles of attack. Its usein
integrating for the lift yields, as will be shown later,
the expected result that -

Lift == potp I’

where I'= I‘a<1 + 1-2I-—h;z

This result justifies the use of the simplified form of
Avfy, in calculating the lift, but its use in integrating
for the moment, although reasonable, is somewhat
uncertain.

If, then, only the first power of % is retained and the
angle of attack taken small enough so that cos a=1 and
sin ae, it follows from equation (22} that

%—”=p{[cos §-+h (448 cos 843 cos 28)la+h(sin 8-sin 28) }

The expression for u.fu, replacing AF/2xRw by the
value given by equation (26), then becomes:

z—:=-2 sin §+2a(1+cos &)

+u[(14cos 8)a+h(5+8 cos §--8 cos 28)«

+h(sin 8-sin 26)] 28)
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CALCULATION OF THE PRESSURE AND LIFT ON THE
AIRFOIL

According to equation (8)

Gl

Then from the adisbatic equation of state

s(2)

and the definition of the local velocity of sound ¢

_ _[dp
o= Z
- -
E*_ Po o 0 7
P _[qqr=1f ¥\
R (o) A

Expanding the right-hand side of the foregoing equa-
2
tion according to powers ofz‘% (=g} it follows that

P=P0+%Pol’o2<1-t,‘:—:)+';—pqﬂozu<l—ﬂ%)z—[— ..

The pressure distribution may be calculated by means
of equation (29) together with the values for v/g, obtained
from equations (22), (24), and (25). Equation (30)
will be used in obtaining the total lift and moment on
the airfoil.

Since the profile is & streamline, the normal velocity
—d¢fon=0 and, accordingly, if ¢ denotes the length
along it, then Bernoulli’s equation may be written

p= constant-——go(l-{-ip)( )-i-é i?ﬁ a¢) + .

Let n denote the inward-drawn normal to the con-
tour. Then from figure 2, it is seen that p cos (§,n)
and p cos (n,n) are the components of the pressure along
the £ and 9 axes, respectively. Accordingly, the force
on the airfoil is given by

P=P—iP,= ——(1—[— )@(b [cos (En)
—icos (n,n)]ds-{- § (gf ) [cos (Em)

—1 cos (n,n)]ds

it follows that

Therefore
(29)

(30)

where the profile € is traversed in the counterclockwise
positive sense. On the other hand

dt=ds cos (3,n), dg=ds cos [x— (§,n)]=—ds cos (§,n)
and therefore

P=2(1+53) § (% @ idn)

—ipn o (32) @e—ian
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Now, by definition,

dw .0

3——- ntinye= gg’ za—f

and, since the velocity normal to the profile equals zero,
it follows that

g? gf & )’ ——Bm (n,m)
Therefore
dw_d¢pdt—idn
dt os ds
But
de*=dg*- dn*=(dt+idy) (dE—1idn)
or
&—id =
Hence
9 _dw oy
d8 dr os

and
P SICILE S ICIIL
ow
( Tg— Where ¢t is the conjugate of ¢

Therefore

(o) S8 )G o

Referring to the plane of the circle of radius B

P=2(14+30) 4, () ez
g (G (G g

where z=e% and & is the polaer angle of the circle of
radius R.
Since by definition

gw =R(—v,+1v,)

it follows from equation (28) that
dw

(32)

7 ivae"‘——va(alz-l-au+a_l+a4+ (33)
where
a0 =(1+%) tia(1+5+4x)
ay =ﬁ;2y+%’ihl-‘a

a1 =ia@+p+5hu)
a_,=—(1 +%‘-)+ia<1+§+4hp)

a_a=—h§‘u+giﬁ}la
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Also from the Joukowski transformation

=2 +§—j
and the relation
¢'=R{z-1h)
it follows that
ET; R[ (1—-%)’
1= +h)’:|
_§<1+1 —2k 2hI = L__%_'__“)
dz
& 12[1—(1 1ye
dz__
& e

Then making use of the well-known relations

§ zmdz=0;if m»»—1
and

§@=zﬂ-ﬂ; if m=—1
c e

it turns out, neglecting as usual terms containing powers
of g, b, and « higher than the first, that

P Po—iP,= —ipovoI‘ol:l +(1 -|-Zh)p]+‘ipovgrog(1 +6h)
or
Povuro(l +158,

This last expression shows that, when the angle of attack
is assumed small enough so that only the first power of
is retained, the component P, of the lift vanishes in
comparison with the component P,
Thus

Lift=P,=p (34)
This expression agrees in form with the corresponding
one in incompressible flow with the auxiliary definition

I‘=I‘[,(1—[—U§_l?'p): e. g., equation (27).

CALCULATION OF THE MOMENT
The moment arm 0¢=m sin (¢—¢) and the force per
unit length along the airfoil is pds (fig. 2). Hence the
total moment about the origin 0 is given by
M= ipmsin (a—¢)ds=§cp(m sin ¢ cos ¢

—m ¢os ¢ sin ¢)ds
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But .
dt=ds cos c and dy=—ds sin ¢
Hence
2= 6 p(m cos odg-tm singd)
= p(edt-+odn) =3  pam
¢ c
Now

gdt+ndn=R.P.;dt
and since d;‘—g':_

EdE+ndn=R-P-§§%,

Substituting for the pressure p the expression

Const.— 2p0(1+1 )( )+;‘;:“ g";) ..

it follows that

M=—lpo<1+%u)R.P. §C(§}i’ tede |
(35)

dw ‘d¢
Referring to the plane of the c1rc1e of radius R
1
M= ""*(HZ“)R P. §b‘ ) edrée
dw\* ’dz @
fﬁm =) (@) e (30)

Performmg the integrations in & manner analogous {o
that for the lift, it turns out that

M=4aran%’a[1 —h+(1 +—g-h)p]— rooPioytuce(2 -+ GR)
or .
M—drpoR0?

146, -

This expression represents the moment about the origin
of coordinates, and the moment about the center of the
circle of radius R (into which the profile is mapped) can
be obtained at once as

M,=M —Lae=41rpoﬂo’a’a+4rpovo’a’a1 -;7hp

or

1+7h

M, _Mc,(l R (38)

where M°=41rpovoza’a is the moment about the center
of the circle of radius R for the corresponding incom-
pressible flow. _

If now d represents the distance of the center of
pressure from the origin of coordinates, then

M=ILd

or

drp P52 0(1 h4+—— L + Gh

d=
4rponoa<1+1+h

=.a(1+3hu) (39)
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This expression shows that the airfoil has a constant | incompressible case, is nearer to the leading edge by
center of pressure at a distance equal to 1/4 (1—38ky) of | about 2.5 percent of the chord.
the chord from the leading edge. For a thin airfoil, | Laxerey MEMORIAL AERONAUTICAL LABORATORY,

say e=0.05 and for a stream velocity v=0.835 ¢, the Natronan ApvisorRY COMMITTEE FOR AERONAUTICS,
center of pressure, as compared with the corresponding LangrEY FieLp, Va., November 19, 1957.



APPENDIX A

APPLICATION OF THE THEORETICAL RESULTS

As an example of the application of the theory to any
particular case, the flows past a thin and a fairly thick
symmetrical Joukowski profile for zero angle of attack
will be calculated. Since no experimental results are
available for purposes of comparison, it was considered
bardly worth while to perform the rather lengthy and
tedious calculations associated with angle of attack or
circulation.

14,
L2 ——
A =~ r~d.
I. 0‘ \\"-Q\ -Velocity
I ——
8 ‘.“
¥
.6
aﬂ (]
}‘ 4 : ————J/ncompressible fkid,
“ \; - ————rCompressible fiud
< \1 :
S.z
W i
: - -
8, Jp=
=z
a} =7
2 \\ | AZ377 |Pressure
W1
\‘__T,—
-4
e
-6
-8
a 20 40 60 & 100 G /40 /80 /80
é, deg.

FrauBE 3.—Pressure and velocity distribution for the symmetrieal Joukowski alrfoll
seotion ¢=0.05. x=0.70, a=Q®.

Equation (28) for Av/v, simplifies considerably when

the angle of attack « is taken to be zero. Thus
Av p[h(l.‘?, —21h—4h%4-30h3—24R*—8R%) . 5
3k3 s
4——"(1,5, D 2a+ ’ gin 35

(40)

where
Jo(0) = (1+2R)(1—4k% (1 —1)? sin &
2 2 1—2k cos 8+F2
. ksiné
—h2 —_ -1 bl
R sin §—k(cos 8-+ h cos 25) tan T oo
_h (sin 8+4 sin 28) log (1—2k cos §+Kk%)
2
(4 e
/ ~J1_ & - 1
L2 A , et -
. / — .
\ Rl Ve/ocity
L0 ‘.\ i -
14 LT
B! Y
6 ot
_ ble Fluid
R e et A e
al AuRp ANk
1 - __,.,{__.
[~%
Olem “‘ 4 74
Yy
VY Pressur-e
-2 - / ]
¢ _
_4 \ // 1/ - . __,_J
1 ,’ . | s
iy ‘\‘ \ i /,A', - -
N ]
-8 \‘\ — -’ o I
g 20 40 60 806 a@/go /20 140 160 180

FIGURE 4.—Pressuro snd veloclty distributlons for the symmetrical Joukowsk! afrfoll
seotion e=0.15, umQ.47, a=0"

The profiles chosen are defined by ¢=0.05 and ¢=0.15
or h=1/21, k=19/21; and h=3/28, k=17/23, respect-
ively. Tables I and II present the calculations and
figures 3 and 4 show the velocity and pressure distri-
butions for both incompressible and compressible flow.
The values of u chosen were the critical values ob-
tained by plotting (vs/00)mes against tofes and then noting
the intersection of this graph with that of (v/vg)ers

_321!."(‘1:5.—@*1 Jz(0)+ 3%—.—1&!3 I’:I
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against nfc, as given by equation (9). Table III
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presents the dats and figure 5 shows the corresponding
graphs,
The expressions for Avfr, are given by:

A
\
A

A

(7’1"/7"0 ,rri 1] (?’/”n )m:u:

635

™~

/

a La

.8
v /e

F1GURE 5.—Limlting values of ry/cs at zero angle of attack for ¢=0.06 and e=0.13

for =0.05

A . . R
;f’=p[0.05890 sin §4-0.05276 sin 25-40.00125 sin 35

—0.02585./,(0)-0.002461,]

209
and
for e=0.15
%=y[0.24905 sin 54-0.18053 sin 2540.01151 sin 35
—0.40568.,(0)4-0.10583T;]

It is to be noted in tables I, IT, and IIT that the maxi-
mum velocity o/t for the incompressible flow occurs
at about §=385° and §=45° for ¢=0.05 and =0.15,

/ e=./5
.
$ O] | ™
—

T [ [
Yo 2 3 4 5 6 .7 8 .9 0
¢ fehord

Y, e=.05%
3
8
fo
.
0 f 2 3 & 7 8 9 0

£ 5
¢ /fehord
FiGURE 6.— Symmetrical Jounkowski profiles «=0.05 and €=0.15.

respectively. It is then assumed that the position of
maximum velocity is independent of p and maximum
values for vpfr, are calculated for various values of p.
These values of (Upfty)mas &Te given in table IIT and are
used in obtaining the critical values of g as shown in
figure 5. The coordinates of the eirfoils e=0.05, e=0.15
are given in table IV and the corresponding contours

in figure 6.



APPENDIX B

NOTATION
Y rectangular coordinates in the plane of the
circle. -
£ rectangular coordinates in the plane of the
profile.

2=-’C+?:‘y: {=&+1n

r, 6, plane polar coordinates in the z plane.

v5, ¥y,  fluid velocity components along the xz and y
axes, respectively.

Ve tangential velocity on the circle.

Up, tangential velocity on the profile correspond-
ing to v,.

v=+/v-2,%, magnitude of the fluid velocity.

¢, locel velocity of sound in the fluid.

2 density of the fluid.

P, static pressure in the fluid.

Doy Coy Poy Do, corresponding magnitudes in the undis-
turbed stream.

_<ﬂ» ’

E=\e

Ay, correction term to the velocity in incompres-
sible flow due to compressibility.

?, velocity potential of the incompressible flow.

Pp= _g_:b’ component of velocity along the radius vector.

RS —;1' %; component of velocity perpendicular to the

radius vector in the sense of § increasing.

N
r

R, radius of circle into which the profile is
mapped.

R ratio of specific heats.

w, complex potential of the incompressible flow
in the { plane.

ay angle of attack.

& thickness coeflicient of Joukowski profile (sce

fig. 2).
€
k=i—¢—1—2%
14¢

T, "~ eirculation about profile in the compressible
fluid.

Ty, " circulation about profile in the incompres-
sible fluid.

AT'=T— Ty, contribution to the circulation due to com-

pressibility.

P, force vector on the airfoil.

P, P,, components of P along the ¢ and y axes,
respectively.

M, moment about origin of coordinates in the

plane of compressible flow.

M., moment about center of circle of radius R
in the plane of compressible flow.
M,, moment corresponding to Af, in the plane of
incompressible flow.
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TABLE III

o ( ) =s3 L(y
) T/ erit

=005 e=0.15
0.0 L1209 1.300 o
.2 1122 L3007 4,575
-4 1130 1.333 2.315
.5 L136 L3% L &0
. L143 1.372 L&74
.7 L1151 1400 L3es
.8 L 161 1430 L2t
Lo L1835 L5038 Lo0g

r—1 -
(H) - 7 +1 F+ T with y=L408
(fl) "“-—— +0.lm4‘£

TABLE IV
COORDINATES OF THE AIRFOILS

TABLE I
1 19
Case 1: «e=0.05, h=77: k=577 «=0
21 ]
. P=pr
[ 1 A T:an- r e
(deg.) | Ja0) Is =T {?::'1 com- ™
g;ﬁ) (e=0.70) g:.’g"_' Incom-
sihle pressihle
¢ | 0.0000 | 0.0000 | 0.0000 57619 | 0.00CG | 0.G000 | L1748 0000
5 | 2.6620 | 10.8700 | —.0275 | 4.3458 | .7876 | .6743 L8971 L4201
10 | 23055 | B.245 [ —. 0104 | 28772 | .0903 | .978¢ L0431 .00LS
15 t L7670 | 5.5612 L0105 | 2.0752 | 1.0742 | 1.0394 | —. IR08 | —.
2 | 1.3904 | 8.9262 L0220 1 1.6122 { 1,102S | L. —. 274 | —. 2162
30 Q477 | 2.2576 L0575 | L1197 [ L1167 | 1.1645 | —.33 —. 2537
40 L7041 | 14504 L0764 | .8700 | L1185 | 11648 | —. 3346 | —. 2510
50 5508 | 10336 L0881 | .7247 | L1103 | L1538 | —. 3 —. 2327
[i ] L4448 .07 L0872 | .6341 | 1L.09S3 | L1388 | —. 2774 | —. 2062
70 . 3685 . 6148 L0807 | .5i67 | 10838 | L1163 | —.2856 | —. 1747
0 - 3055 4393 L0683 | 5422 | 10679 | L0937 | — 1854 | —. 144
'] . 2560 3951 L0520 | (5255 | 10511 | 10701 | — 1§15 | —. 1047
100 L2148 5214 L0841 | L5250 L0486 | ~—.0938 | —. 0884
110 . 1788 . 2683 L0168 | 5414 | 1. QL7 LQ229 | —0480 [ —.
120 1474 2112 L0020 | 5785 { 1.0020 | 1.0028 | —. 0083 | —.
130 . 1190 A9 | — G443 .0878 [ .0539 0322 0242
140 - L1294 | —. 0151 | .7588 | .9706 | .9675 . 0647 . 0486
150 . 0688 . —.0165 | .9637 | . . 9546 0902 L0874
160 . 0540 L0617 { —. 0130 | 1.4010 | . JOHS . 1094 0876
170 0223 L0805 | —. 0077 { 227465 | .QE30 | .9B30L 1205 0002
180 . 0600 . 0000 - L0000 [ . . 9358 1270 . 0930
_ n4%cosd
1 Facobian = 4T oo8 (0 Ja—ri8 e §
TABLE II
3 17
+ . = —_— —— =
Case 2: ¢e=0.15, A= 73’ k= o5’ @ ¢
s il ]
3 .._Pan , il
1 Ar . | slin- £
(deg) | Ja®) | & r Jocor | eom- | u
gtrﬁs- (u=047 Com- [ yn. ;.
e} &'ﬁ"; pressible
0 [0.0000]| 0.0000] 0.0000 | 2.4493 | 0.0000 | 0.0000 | 1.3175 | L0000
] 5070 L0412 ) — 0504 | 28542 | 4104 | 8548 .3640 8316
10 8207 | L4940 | —. 0841 | 221253 | .7881 [ .674L . 5805 . 4559
15 L0299} 16508 | —.0367 ) 1.858 [ .9627 [ 9250 . 1410 L0732
20 . 9199 L 5876 L0060 | 1.0162 | 1.1055 [ L1101 | —. 2260 | —.2232
30 L7844 | L2790 JHOOE | L2478 | L2473 | L3115 | —. —, 5556
40 G458 .9927 L1030 | 10064 | 1.2038 | 13851 | —. 8183 | — 6739
50 . 524¢ L7736 LM38 | 8465 § L2900 | L3M) | —.83%6 | —. 6821
60 4345 6215 L2618 .7878 | L2776 | L3868l | —.7 —. 6320
70 . 3630 . 5038 . L6819 | 12433 | 1.8218 | —. 68816 | —. 5174
80 . 3052 .4130 L2170 | L6106 | L2026 [ 12649 | —. 650 —. 4463
20 2871 3400 L5788 | 1.1566 | L2026 | —.4220 | —. 8338
100 .2163 . 2818 JIE56 | 8620 [ L1087 | 11398 | —. 267 —. 2243
11¢ 1807 <yl .0835 | .5646 | LOGLL { 1.0780 | —.158% | —. 1260
120 L1491 . .0 L5865 | LOISS | 1.0210 | — 0422 | —. (318
130 1205 1516 | —. OI41 | .6380 ] .9743 | .970L 0582 . 0507
140 L0840 75 | —.0335 | L7290 | L9384 | .90 .1483 1195
150 . 0692 .0860 | —. 0303 | .0090 | .0000 | .8922 <258 Y737
160 . 0458 0564 | —. 0834 | L2972 | .8873 | .8870 - 2555 2126
170 L0226 0501 —.0190 | 25186 | .8740 | .8516 . 2837 . 2361
180 . 0000 . 0000 . .0000 | .S6836 [ .83%9 . 3067 .
1 Facoblanmp 2o toycos §

23 cos (31)+/B18—T52 cosé

a=0.05 «=(.15
&
(deg.) £ 1 £

chord chord | echord chord
a 1 1. 0000 0. 0200 1. 0000 (. 0000

10 . 9930 . 0050 .9938 .
20 9723 . 0185 9751 (414
30 L4 0220 g4 . 05692
40 .8917 .00 9028 0738
5 .8339 . 0304 8495 L0845
60 . 7662 .0318 . T87L L0907
70 . 6804 L0315 7163 . (822
80 . 6084 L0295 .6ass 0681
90 L5228 .81 . 5558 . 0620
i00 . 4355 .0218 4005 .0716
110 -3406 L0171 . 3330 . 03589
120 2678 L0124 . L0454
130 .1023 . 0082 L2178 L0324
140 1271 . 0040 1467 L0211
150 . 0732 . 0025 0840 0123

160 .0831 .0010 . 0388 .
170 . G084 . 0003 . 0098 . 0025
180 . 0G00 . 0000 . 0000 - 0000

1 Nose. t Tail.
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